If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2+5c-100=0
a = 1; b = 5; c = -100;
Δ = b2-4ac
Δ = 52-4·1·(-100)
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{17}}{2*1}=\frac{-5-5\sqrt{17}}{2} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{17}}{2*1}=\frac{-5+5\sqrt{17}}{2} $
| p/12.6=1.9 | | 17+y=-5-y | | √x+5=12 | | 9+3x+6=30 | | 33=-x+16 | | 45=11w-2w | | -2x-6=8-2x | | 0.2+x=1.1 | | -14v+4+16v=-14+8v | | -12.17=w-5.9 | | 8k+28-6k=42 | | 5x–x+6=21–3 | | 23x=8 | | x^2/4=49 | | 3x+8=7x-25/2 | | 0.3b+1.47=2.5b+17.97 | | 52-51=x | | 1/3(12n-9)=37 | | 15w=42+8w | | 5x-25=15x | | 102x-1=101x-1 | | -2n+10+5n=25 | | 1+7j=8j+16 | | -7(2x-6)=-2(-5x+7)-16 | | 5(x–6)=84 | | 9x-27/2=4x+3 | | c+28-14=100 | | (8x-3)(-2x+1)=0 | | 2x+5x-4=7(x+)-5 | | x+90°+78°=180°. | | 7x+10=-2x-10 | | -14.2-14.11-m=12.9m+2.75 |